Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.283
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1334351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567020

RESUMO

Most tick-borne viruses (TBVs) are highly pathogenic and require high biosecurity, which severely limits their study. We found that Sindbis virus (SINV), predominantly transmitted by mosquitoes, can replicate in ticks and be subsequently transmitted, with the potential to serve as a model for studying tick-virus interactions. We found that both larval and nymphal stages of Rhipicephalus haemaphysaloides can be infected with SINV-wild-type (WT) when feeding on infected mice. SINV replicated in two species of ticks (R. haemaphysaloides and Hyalomma asiaticum) after infecting them by microinjection. Injection of ticks with SINV expressing enhanced Green Fluorescent Protein (eGFP) revealed that SINV-eGFP specifically aggregated in the tick midguts for replication. During blood-feeding, SINV-eGFP migrated from the midguts to the salivary glands and was transmitted to a new host. SINV infection caused changes in expression levels of tick genes related to immune responses, substance transport and metabolism, cell growth and death. SINV mainly induced autophagy during the early stage of infection; with increasing time of infection, the level of autophagy decreased, while the level of apoptosis increased. During the early stages of infection, the transcript levels of immune-related genes were significantly upregulated, and then decreased. In addition, SINV induced changes in the transcription levels of some functional genes that play important roles in the interactions between ticks and tick-borne pathogens. These results confirm that the SINV-based transmission model between ticks, viruses, and mammals can be widely used to unravel the interactions between ticks and viruses.


Assuntos
Carrapatos , Vírus , Animais , Camundongos , Vírus Sindbis/genética , Mosquitos Vetores , Mamíferos
2.
Virol J ; 21(1): 76, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553727

RESUMO

BACKGROUND: RNA helicases are emerging as key factors regulating host-virus interactions. The DEAD-box ATP-dependent RNA helicase DDX5, which plays an important role in many aspects of cellular RNA biology, was also found to either promote or inhibit viral replication upon infection with several RNA viruses. Here, our aim is to examine the impact of DDX5 on Sindbis virus (SINV) infection. METHODS: We analysed the interaction between DDX5 and the viral RNA using imaging and RNA-immunoprecipitation approaches. The interactome of DDX5 in mock- and SINV-infected cells was determined by mass spectrometry. We validated the interaction between DDX17 and the viral capsid by co- immunoprecipitation in the presence or absence of an RNase treatment. We determined the subcellular localization of DDX5, its cofactor DDX17 and the viral capsid protein by co-immunofluorescence. Finally, we investigated the impact of DDX5 depletion and overexpression on SINV infection at the viral protein, RNA and infectious particle accumulation level. The contribution of DDX17 was also tested by knockdown experiments. RESULTS: In this study we demonstrate that DDX5 interacts with the SINV RNA during infection. Furthermore, the proteomic analysis of the DDX5 interactome in mock and SINV-infected HCT116 cells identified new cellular and viral partners and confirmed the interaction between DDX5 and DDX17. Both DDX5 and DDX17 re-localize from the nucleus to the cytoplasm upon SINV infection and interact with the viral capsid protein. We also show that DDX5 depletion negatively impacts the viral replication cycle, while its overexpression has a pro-viral effect. Finally, we observed that DDX17 depletion reduces SINV infection, an effect which is even more pronounced in a DDX5-depleted background, suggesting a synergistic pro-viral effect of the DDX5 and DDX17 proteins on SINV. CONCLUSIONS: These results not only shed light on DDX5 as a novel and important host factor to the SINV life cycle, but also expand our understanding of the roles played by DDX5 and DDX17 as regulators of viral infections.


Assuntos
Infecções por Alphavirus , Proteínas do Capsídeo , Humanos , Proteômica , Replicação Viral , RNA , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Vírus Sindbis/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474178

RESUMO

This review article provides a comprehensive overview of a novel Sindbis virus vaccine platform as potential immunotherapy for ovarian cancer patients. Ovarian cancer is the most lethal of all gynecological malignancies. The majority of high-grade serous ovarian cancer (HGSOC) patients are diagnosed with advanced disease. Current treatment options are very aggressive and limited, resulting in tumor recurrences and 50-60% patient mortality within 5 years. The unique properties of armed oncolytic Sindbis virus vectors (SV) in vivo have garnered significant interest in recent years to potently target and treat ovarian cancer. We discuss the molecular biology of Sindbis virus, its mechanisms of action against ovarian cancer cells, preclinical in vivo studies, and future perspectives. The potential of Sindbis virus-based therapies for ovarian cancer treatment holds great promise and warrants further investigation. Investigations using other oncolytic viruses in preclinical studies and clinical trials are also presented.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , Vacinas , Humanos , Feminino , Vírus Sindbis , Terapia Viral Oncolítica/métodos , Recidiva Local de Neoplasia/terapia , Neoplasias Ovarianas/patologia , Imunoterapia/métodos
4.
PLoS Pathog ; 20(2): e1012047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412195

RESUMO

Variability in how individuals respond to pathogens is a hallmark of infectious disease, yet the basis for individual variation in host response is often poorly understood. The titer of infectious virus among individual mosquitoes infected with arboviruses is frequently observed to vary by several orders of magnitude in a single experiment, even when the mosquitoes are highly inbred. To better understand the basis for this titer variation, we sequenced populations of Sindbis virus (SINV) obtained from individual infected Aedes aegypti mosquitoes that, despite being from a highly inbred laboratory colony, differed in their titers of infectious virus by approximately 10,000-fold. We observed genetic differences between these virus populations that indicated the virus present in the midguts of low titer mosquitoes was less fit than that of high titer mosquitoes, possibly due to founder effects that occurred during midgut infection. Furthermore, we found dramatic differences in the specific infectivity or SI (the ratio of infectious units/viral genome equivalents) between these virus populations, with the SI of low titer mosquitoes being up to 10,000-fold lower than that of high titer mosquitoes. Despite having similar amounts of viral genomes, low titer mosquitoes appeared to contain less viral particles, suggesting that viral genomes were packaged into virions less efficiently than in high titer mosquitoes. Finally, antibiotic treatment, which has been shown to suppress mosquito antiviral immunity, caused an increase in SI. Our results indicate that the extreme variation that is observed in SINV infectious titer between individual Ae. aegypti mosquitoes is due to both genetic differences between virus populations and to differences in the proportion of genomes that are packaged into infectious particles.


Assuntos
Aedes , Infecções por Alphavirus , Humanos , Animais , Vírus Sindbis/genética , Sequência de Bases , Mosquitos Vetores
5.
Emerg Microbes Infect ; 13(1): 2300452, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164715

RESUMO

ABSTRACTAlphaviruses are arthropod-borne, single-stranded positive-sense RNA viruses that are recognized as rapidly emerging pathogens. Despite being exquisitely sensitive to the effects of the innate immune response alphaviruses can readily replicate, disseminate, and induce pathogenesis in immunologically competent hosts. Nonetheless, how alphaviruses evade the induction of an innate immune response prior to viral gene expression, or in non-permissive infections, is unknown. Previously we reported the identification of a novel host/pathogen interaction between the viral Capsid (CP) protein and the host IRAK1 protein. The CP/IRAK1 interaction was determined to negatively impact IRAK1-dependent PAMP detection in vitro, however, the precise importance of the CP/IRAK1 interaction to alphaviral infection remained unknown. Here we detail the identification of the CP/IRAK1 interaction determinants of the Sindbis virus (SINV) CP protein and examine the importance of the interaction to alphaviral infection and pathogenesis in vivo using an interaction deficient mutant of the model neurotropic strain of SINV. Importantly, these interaction determinants are highly conserved across multiple Old-World alphaviruses, including Ross River virus (RRV), Mayaro virus (MAYV), Chikungunya virus (CHIKV), and Semliki Forest virus (SFV). In the absence of a functional CP/IRAK1 interaction, SINV replication is significantly restricted and fails to disseminate from the primary site of inoculation due to the induction of a robust type-I Interferon response. Altogether these data indicate that the evasion of IRAK1-dependent signalling is critical to overcoming the host innate immune response and the in vivo data presented here demonstrate the importance of the CP/IRAK1 interaction to neurovirulence and pathogenesis.


Assuntos
Vírus Chikungunya , Vírus Sindbis , Camundongos , Animais , Vírus Sindbis/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Virulência , Vírus Chikungunya/genética , Replicação Viral
6.
J Virol ; 98(1): e0135023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38169284

RESUMO

Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.


Assuntos
Infecções por Alphavirus , Antígenos de Superfície , Proteínas Ligadas por GPI , Acetiltransferases N-Terminal , Vírus Sindbis , Replicação Viral , Humanos , Infecções por Alphavirus/genética , Antígenos de Superfície/genética , Citidina/análogos & derivados , Proteínas Ligadas por GPI/genética , RNA Mensageiro/genética , Vírus Sindbis/fisiologia , Linhagem Celular , Acetiltransferases N-Terminal/genética , Estabilidade de RNA
7.
J Med Virol ; 96(1): e29376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235850

RESUMO

Semliki Forest virus (SFV) viral replicon particles (VRPs) have been frequently used in various animal models and clinical trials. Chimeric replicon particles offer different advantages because of their unique biological properties. We here constructed a novel three-plasmid packaging system for chimeric SFV/SIN VRPs. The capsid and envelope of SIN structural proteins were generated using two-helper plasmids separately, and the SFV replicon contained the SFV replicase gene, packaging signal of SIN, subgenomic promoter followed by the exogenous gene, and 3' UTR of SIN. The chimeric VRPs carried luciferase or eGFP as reporter genes. The fluorescence and electron microscopy results revealed that chimeric VRPs were successfully packaged. The yield of the purified chimeric VRPs was approximately 2.5 times that of the SFV VRPs (1.38 × 107 TU/ml vs. 5.41 × 106 TU/ml) (p < 0.01). Furthermore, chimeric VRPs could be stored stably at 4°C for at least 60 days. Animal experiments revealed that mice immunized with chimeric VRPs (luciferase) had stronger luciferase expression than those immunized with equivalent amount of SFV VRPs (luciferase) (p < 0.01), and successfully expressed luciferase for approximately 12 days. Additionally, the chimeric VRPs expressed the RBD of SARS-CoV-2 efficiently and induced robust RBD-specific antibody responses in mice. In conclusion, the chimeric VRPs constructed here met the requirements of a gene delivery tool for vaccine development and cancer therapy.


Assuntos
Vírus da Floresta de Semliki , Vírus Sindbis , Camundongos , Animais , Vírus da Floresta de Semliki/genética , Vírus Sindbis/genética , Plasmídeos/genética , Replicon , Luciferases/genética , Vetores Genéticos
8.
mSystems ; 9(2): e0116323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294229

RESUMO

Modifications on viral RNAs (vRNAs), either genomic RNAs or RNA transcripts, have complex effects on the viral life cycle and cellular responses to viral infection. The advent of Oxford Nanopore Technologies Direct RNA Sequencing provides a new strategy for studying RNA modifications. To this end, multiple computational tools have been developed, but a systemic evaluation of their performance in mapping vRNA modifications is lacking. Here, 10 computational tools were tested using the Sindbis virus (SINV) RNAs isolated from infected mammalian (BHK-21) or mosquito (C6/36) cells, with in vitro-transcribed RNAs serving as modification-free control. Three single-mode approaches were shown to be inapplicable in the viral context, and three out of seven comparative methods required cutoff adjustments to reduce false-positive predictions. Utilizing optimized cutoffs, an integrated analysis of comparative tools suggested that the intersected predictions of Tombo_com and xPore were significantly enriched compared with the background. Consequently, a pipeline integrating Tombo_com and xPore was proposed for vRNA modification detection; the performance of which was supported by N6-methyladenosine prediction in severe acute respiratory syndrome coronavirus 2 RNAs using publicly available data. When applied to SINV RNAs, this pipeline revealed more intensive modifications in subgenomic RNAs than in genomic RNAs. Modified uridines were frequently identified, exhibiting substantive overlapping between vRNAs generated in different cell lines. On the other hand, the interpretation of other modifications remained unclear, underlining the limitations of the current computational tools despite their notable potential.IMPORTANCEComputational approaches utilizing Oxford Nanopore Technologies Direct RNA Sequencing data were almost exclusively designed to map eukaryotic epitranscriptomes. Therefore, extra caution must be exercised when using these tools to detect vRNA modifications, as in most cases, vRNA modification profiles should be regarded as unknown epitranscriptomes without prior knowledge. Here, we comprehensively evaluated the performance of 10 computational tools in detecting vRNA modification sites. All tested single-mode methods failed to differentiate native and in vitro-transcribed samples. Using optimized cutoff values, seven tested comparative tools generated very different predictions. An integrated analysis showed significant enrichment of Tombo_com and xPore predictions against the background. A pipeline for vRNA modification detection was proposed accordingly and applied to Sindbis virus RNAs. In conclusion, our study underscores the need for the careful application of computational tools to analyze viral epitranscriptomics. It also offers insights into alphaviral RNA modifications, although further validation is required.


Assuntos
Nanoporos , Vírus Sindbis , Animais , Vírus Sindbis/genética , RNA Viral/genética , Linhagem Celular , Análise de Sequência de RNA , Mamíferos/genética
9.
Proc Natl Acad Sci U S A ; 120(37): e2303080120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669371

RESUMO

Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1-nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.


Assuntos
Aedes , Infecções por Alphavirus , Vírus Chikungunya , Superinfecção , Febre Amarela , Animais , Vírus Sindbis
10.
J Virol ; 97(10): e0095923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772825

RESUMO

IMPORTANCE: Viral encephalomyelitis outcome is dependent on host responses to neuronal infection. Interferon (IFN) is an important component of the innate response, and IFN regulatory factor (IRF) 7 is an inducible transcription factor for the synthesis of IFN-α. IRF7-deficient mice develop fatal paralysis after CNS infection with Sindbis virus, while wild-type mice recover. Irf7 -/- mice produce low levels of IFN-α but high levels of IFN-ß with induction of IFN-stimulated genes, so the reason for this difference is not understood. The current study shows that Irf7 -/- mice developed inflammation earlier but failed to clear virus from motor neuron-rich regions of the brainstem and spinal cord. Levels of IFN-γ and virus-specific antibody were comparable, indicating that IRF7 deficiency does not impair expression of these known viral clearance factors. Therefore, IRF7 is either necessary for the neuronal response to currently identified mediators of clearance or enables the production of additional antiviral factor(s) needed for clearance.


Assuntos
Infecções por Alphavirus , Encefalomielite , Fator Regulador 7 de Interferon , Vírus Sindbis , Animais , Camundongos , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Tronco Encefálico/virologia , Encefalomielite/imunologia , Encefalomielite/virologia , Inflamação/virologia , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon beta/imunologia , Interferon beta/metabolismo , Neurônios Motores/virologia , Vírus Sindbis/imunologia , Medula Espinal/virologia
11.
Viruses ; 15(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37632027

RESUMO

Arboviruses are defined by their ability to replicate in both mosquito vectors and mammalian hosts. There is good evidence that arboviruses "prime" their progeny for infection of the next host, such as via differential glycosylation of their outer glycoproteins or packaging of host ribosomal subunits. We and others have previously shown that mosquito-derived viruses more efficiently infect mammalian cells than mammalian-derived viruses. These observations are consistent with arboviruses acquiring host-specific adaptations, and we hypothesized that a virus derived from either the mammalian host or mosquito vector elicits different responses when infecting the mammalian host. Here, we perform an RNA-sequencing analysis of the transcriptional response of Human Embryonic Kidney 293 (HEK-293) cells to infection with either mosquito (Aedes albopictus, C7/10)- or mammalian (Baby Hamster Kidney, BHK-21)-derived Sindbis virus (SINV). We show that the C7/10-derived virus infection leads to a more robust transcriptional response in HEK-293s compared to infection with the BHK-derived virus. Surprisingly, despite more efficient infection, we found an increase in interferon-ß (IFN-ß) and interferon-stimulated gene (ISG) transcripts in response to the C7/10-derived virus infection versus the BHK-derived virus infection. However, translation of interferon-stimulated genes was lower in HEK-293s infected with the C7/10-derived virus, starkly contrasting with the transcriptional response. This inhibition of ISG translation is reflective of a more rapid overall shut-off of host cell translation following infection with the C7/10-derived virus. Finally, we show that the C7/10-derived virus infection of HEK-293 cells leads to elevated levels of phosphorylated eukaryotic translation elongation factor-2 (eEF2), identifying a potential mechanism leading to the more rapid shut-off of host translation. We postulate that the rapid shut-off of host translation in mammalian cells infected with the mosquito-derived virus acts to counter the IFN-ß-stimulated transcriptional response.


Assuntos
Aedes , Interferon Tipo I , Lactente , Animais , Cricetinae , Humanos , Vírus Sindbis/genética , Células HEK293 , Interferon beta/genética , Mamíferos
12.
Anticancer Res ; 43(7): 2923-2932, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37351990

RESUMO

BACKGROUND/AIM: Sindbis virus (SINV) is a naturally occurring oncolytic virus that kills cancer cells and is less harmful to normal cells. In this study, a recombinant SINV, which expressed green and blue fluorescent proteins, was used to precisely analyze SINV infection and replication. MATERIALS AND METHODS: Antiviral responses, including IFN-ß mRNA, protein kinase R (PKR), NF-B, and caspase 3/7, were analyzed in SINV-infected cancerous HeLa cells and normal human fibroblast TIG-1-20 cells. RESULTS: SINV could infect, replicate, and proliferate both in HeLa and TIG-1-20 cells, causing lytic infection only in HeLa cells. SINV grew preferentially in HeLa cells causing remarkable apoptosis. IFN-ß mRNA expression was suppressed in SINV-infected HeLa cells compared to that in TIG-1-20 cells. Further analyses of PKR and NF-B upstream of IFN-ß induction revealed that the compromised response in the PKR-NF-B pathway during early infection coincided with IFN induction suppression in HeLa cells. CONCLUSION: Dysregulation of PKR in HeLa cells is the determinant of SINV oncolysis.


Assuntos
NF-kappa B , Vírus Sindbis , Humanos , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Células HeLa , NF-kappa B/metabolismo , Proteínas Quinases , RNA Mensageiro/metabolismo
13.
Cell Rep ; 42(5): 112441, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37104090

RESUMO

RNA interference (RNAi) is a well-established antiviral immunity. However, for mammalian somatic cells, antiviral RNAi becomes evident only when viral suppressors of RNAi (VSRs) are disabled by mutations or VSR-targeting drugs, thereby limiting its scope as a mammalian immunity. We find that a wild-type alphavirus, Semliki Forest virus (SFV), triggers the Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs) in both mammalian somatic cells and adult mice. These SFV-vsiRNAs are located at a particular region within the 5' terminus of the SFV genome, Argonaute loaded, and active in conferring effective anti-SFV activity. Sindbis virus, another alphavirus, also induces vsiRNA production in mammalian somatic cells. Moreover, treatment with enoxacin, an RNAi enhancer, inhibits SFV replication dependent on RNAi response in vitro and in vivo and protects mice from SFV-induced neuropathogenesis and lethality. These findings show that alphaviruses trigger the production of active vsiRNA in mammalian somatic cells, highlighting the functional importance and therapeutic potential of antiviral RNAi in mammals.


Assuntos
Infecções por Alphavirus , Antivirais , Animais , Camundongos , Interferência de RNA , Linhagem Celular , RNA Interferente Pequeno/genética , Vírus da Floresta de Semliki/genética , Vírus Sindbis/genética , Mamíferos/genética , Replicação Viral
14.
Viruses ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112813

RESUMO

Certain re-emerging alphaviruses, such as chikungunya virus (CHIKV), cause serious disease and widespread epidemics. To develop virus-specific therapies, it is critical to understand the determinants of alphavirus pathogenesis and virulence. One major determinant is viral evasion of the host interferon response, which upregulates antiviral effectors, including zinc finger antiviral protein (ZAP). Here, we demonstrated that Old World alphaviruses show differential sensitivity to endogenous ZAP in 293T cells: Ross River virus (RRV) and Sindbis virus (SINV) are more sensitive to ZAP than o'nyong'nyong virus (ONNV) and CHIKV. We hypothesized that the more ZAP-resistant alphaviruses evade ZAP binding to their RNA. However, we did not find a correlation between ZAP sensitivity and binding to alphavirus genomic RNA. Using a chimeric virus, we found the ZAP sensitivity determinant lies mainly within the alphavirus non-structural protein (nsP) gene region. Surprisingly, we also did not find a correlation between alphavirus ZAP sensitivity and binding to nsP RNA, suggesting ZAP targeting of specific regions in the nsP RNA. Since ZAP can preferentially bind CpG dinucleotides in viral RNA, we identified three 500-bp sequences in the nsP region where CpG content correlates with ZAP sensitivity. Interestingly, ZAP binding to one of these sequences in the nsP2 gene correlated to sensitivity, and we confirmed that this binding is CpG-dependent. Our results demonstrate a potential strategy of alphavirus virulence by localized CpG suppression to evade ZAP recognition.


Assuntos
Alphavirus , Vírus Chikungunya , Alphavirus/genética , Alphavirus/metabolismo , Antivirais/farmacologia , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , RNA Viral/metabolismo , Vírus Sindbis/genética , Replicação Viral , Dedos de Zinco , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo
15.
J Med Microbiol ; 72(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36943350

RESUMO

Sindbis virus (SINV) is the causative agent of a febrile infection commonly called Ockelbo disease, Pogosta disease or Karelian fever in northern Europe. Finland, Sweden, Russia and South Africa experience periodic SINV outbreaks. SINV is classified within the family Togaviridae and genus Alphavirus. Symptoms of SINV infection in humans include joint inflammation and pain, fever, rash and fatigue. In some cases, joint symptoms can persist for years after recovery from the initial infection. Clinical signs of SINV infection are rarely reported in animals, although infection in horses has been documented. There is no specific treatment or vaccination. The virus is transmitted by mosquitoes, particularly those belonging to the Culex genus, but Aedes, Culiseta or Mansonia species may also act as vectors. Wild birds act as amplifying hosts and are implicated in the long-distance spread of the virus.


Assuntos
Aedes , Vírus Sindbis , Animais , Humanos , Cavalos , Mosquitos Vetores , Suécia/epidemiologia , Artralgia
16.
Viruses ; 15(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992301

RESUMO

The West Nile Virus (WNV) and Sindbis virus (SINV) are avian-hosted mosquito-borne zoonotic viruses that co-circulate in some geographical areas and share vector species such as Culex pipiens and Culex torrentium. These are widespread in Europe, including northern parts and Finland, where SINV is endemic, but WNV is currently not. As WNV is spreading northwards in Europe, we wanted to assess the experimental vector competence of Finnish Culex pipiens and Culex torrentium mosquitoes to WNV and SINV in different temperature profiles. Both mosquito species were found susceptible to both viruses and got infected via infectious blood meal at a mean temperature of 18 °C. WNV-positive saliva was detected at a mean temperature of 24 °C, whereas SINV-positive saliva was detected already at a mean temperature of 18 °C. Cx. torrentium was found to be a more efficient vector for WNV and SINV over Cx. pipiens. Overall, the results were in line with the previous studies performed with more southern vector populations. The current climate does not seem optimal for WNV circulation in Finland, but temporary summertime transmission could occur in the future if all other essential factors are in place. More field data would be needed for monitoring and understanding the northward spreading of WNV in Europe.


Assuntos
Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Vírus Sindbis , Mosquitos Vetores , Europa (Continente)/epidemiologia
17.
Viruses ; 15(1)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680204

RESUMO

Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.


Assuntos
Artrópodes , Vírus Sindbis , Animais , Vírus Sindbis/genética , Proteínas de Ligação a RNA , RNA Viral/genética , Interações Hospedeiro-Patógeno , Artrópodes/genética
18.
Viruses ; 15(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36680227

RESUMO

The impact of mosquito-borne diseases on human and veterinary health is being exacerbated by rapid environmental changes caused mainly by changing climatic patterns and globalization. To gain insight into mosquito-borne virus circulation from two counties in eastern and southeastern Romania, we have used a combination of sampling methods in natural, urban and peri-urban sites. The presence of 37 mosquito-borne viruses in 16,827 pooled mosquitoes was analyzed using a high-throughput microfluidic real-time PCR assay. West Nile virus (WNV) was detected in 10/365 pools of Culex pipiens (n = 8), Culex modestus (n = 1) and Aedes vexans (n = 1) from both studied counties. We also report the first molecular detection of Sindbis virus (SINV) RNA in the country in one pool of Culex modestus. WNV infection was confirmed by real-time RT-PCR (10/10) and virus isolation on Vero or C6/36 cells (four samples). For the SINV-positive pool, no cytopathic effectwas observed after infection of Vero or C6/36 cells, but no amplification was obtained in conventional SINV RT-PCR. Phylogenetic analysis of WNV partial NS5 sequences revealed that WNV lineage 2 of theCentral-Southeast European clade, has a wider circulation in Romania than previously known.


Assuntos
Aedes , Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus Sindbis/genética , Reação em Cadeia da Polimerase em Tempo Real , Filogenia , Romênia/epidemiologia , Microfluídica , Febre do Nilo Ocidental/veterinária , RNA
19.
RNA ; 29(3): 361-375, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617674

RESUMO

Viruses are obligate intracellular parasites, which depend on the host cellular machineries to replicate their genome and complete their infectious cycle. Long double-stranded (ds)RNA is a common viral by-product originating during RNA virus replication and is universally sensed as a danger signal to trigger the antiviral response. As a result, viruses hide dsRNA intermediates into viral replication factories and have evolved strategies to hijack cellular proteins for their benefit. The characterization of the host factors associated with viral dsRNA and involved in viral replication remains a major challenge to develop new antiviral drugs against RNA viruses. Here, we performed anti-dsRNA immunoprecipitation followed by mass spectrometry analysis to fully characterize the dsRNA interactome in Sindbis virus (SINV) infected human cells. Among the identified proteins, we characterized SFPQ (splicing factor, proline-glutamine rich) as a new dsRNA-associated proviral factor upon SINV infection. We showed that SFPQ depletion reduces SINV infection in human HCT116 and SK-N-BE(2) cells, suggesting that SFPQ enhances viral production. We demonstrated that the cytoplasmic fraction of SFPQ partially colocalizes with dsRNA upon SINV infection. In agreement, we proved by RNA-IP that SFPQ can bind dsRNA and viral RNA. Furthermore, we showed that overexpression of a wild-type, but not an RNA binding mutant SFPQ, increased viral infection, suggesting that RNA binding is essential for its positive effect on the virus. Overall, this study provides the community with a compendium of dsRNA-associated factors during viral infection and identifies SFPQ as a new proviral dsRNA binding protein.


Assuntos
Vírus de RNA , RNA de Cadeia Dupla , Humanos , RNA de Cadeia Dupla/genética , Proteômica , Vírus Sindbis/genética , Vírus Sindbis/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Vírus de RNA/genética , Replicação Viral/genética
20.
Viruses ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275942

RESUMO

Sindbis virus (SINV) is a widely dispersed mosquito-borne alphavirus. Reports of Sindbis disease are largely restricted to northern Europe and South Africa. SINV is frequently sampled in Australian mosquito-based arbovirus surveillance programs, but human disease has rarely been reported. Molecular epidemiological studies have characterized six SINV genotypes (G1-G6) based on E2 gene phylogenies, mostly comprising viruses derived from the African-European zoogeographical region and with limited representation of Australasian SINV. In this study, we conducted whole genome sequencing of 66 SINV isolates sampled between 1960 and 2014 from countries of the Australasian region: Australia, Malaysia, and Papua New Guinea. G2 viruses were the most frequently and widely sampled, with three distinct sub-lineages defined. No new G6 SINV were identified, confirming geographic restriction of these viruses to south-western Australia. Comparison with global SINV characterized large-scale nucleotide and amino acid sequence divergence between African-European G1 viruses and viruses that circulate in Australasia (G2 and G3) of up to 26.83% and 14.55%, respectively, divergence that is sufficient for G2/G3 species demarcation. We propose G2 and G3 are collectively a single distinct alphavirus species that we name Argyle virus, supported by the inapparent or mild disease phenotype and the higher evolutionary rate compared with G1. Similarly, we propose G6, with 24.7% and 12.61% nucleotide and amino acid sequence divergence, is a distinct alphavirus species that we name Thomson's Lake virus.


Assuntos
Culicidae , Vírus Sindbis , Animais , Humanos , Vírus Sindbis/genética , Austrália , Genômica , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...